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Abstract

A heat pipe is a self-contained structure which achieves very

high thermal.conductance by means of two-phase fluid flow with

capillary circulation. A quantitative engineering theory for the

design and performance analysis of heat pipes is given.
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1. Introduction

The “Grover

which exhibits a

Heat Pipe
,,1

is a self-contained engineering structure

thermal conductance greatly in excess of that which

could be obtained by the use of a homogeneous piece of any known

metal. This property is achieved within the containing envelope

by the evaporation of a liquid, transport of the vapor to another

part of the container, condensation of the vapor and return of the

condensate to the evaporator through a wick of suitable capillary

structure. The quantitative engineering theory for the design and

performance analysis of heat pipes, alluded to but not elaborated

in the original description of these devices, is supplied herein.

There are obviously many practical uses for a structure of

extraordinarily large thermal conductance. The heat pipe principle

is indeed applicable over a very wide range of sizes, shapes,

temperatures and materials. Unlike solid heat conductors, however,

heat pipes cannot be characterized by a single property (an “equivalent

thermal conductivity”, say), since the behavior and limitations of a

heat pipe are largely integral properties of the device as a whole.

Furthermore, even if the size, shape, temperature and materials of a

heat pipe are specified, the mass, vapor volume fraction, thermal

conductance snd maximum heat flux are individually (through not

independently)under the control of the designer. The particular

application will determine which snowed combination of these properties

is most desirable.
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At the present time, certain quantitative features of heat pipe

behavior have not in fact been verified expertientally, though they

can be predicted with some confidence. A few properties cannot yet

even be treated with any conviction.

It is impractical to furnish a sufficient number of specific

calculations to be generally useful. This report is intended simply

to offer some initial orientation in the quantitative principles

of heat pipes, and to serve as a stimulus for further experimentation,

applications, and improvement of the theory.

2. General heat pipe structure

The advantages of heat pipes are best realized when they are

lon~ snd thin, that is, take the form of long cylinders or extended

thin planar structures. For definiteness the discussion here will

be confined to right circular cylinders of large length-to-diameter

ratio. The course of the analysis for other shapes will be evident,

though not slways straightforward in detail. As shown in Fig. 1,

such a heat pipe consists of a containing tube of length J?with outer

radius rp, an annular capillary structure saturated with a wetting

liouid, with outer radius rlr,and a vapor space of radius rv.

Since heat is added to and removed from the heat pipe through

the container wall by ordinary thermal conduction, this should be

as thin as other considerationspermit, in order to minimize radial

temperature differences. The container wall must of course sustain

-8-



the difference between the internal and the smbient pressure. Heat

pipes become effective at internal.vapor pressures as low as a

hundreth of an atmosphere, and improve with increasing pressure. It

will ordinarily be possible nearly to match the smbient pressure by

choice of a working fluid with an appropriate vapor pressure at the

desired operating temperature. The question of the long-term

compatibility of the container with the working fluid might determine

its thickness, or the container might even be a structural element

with other functions in the larger device of which the heat pipe is

a part.

The details of the wick admit of wide variation. It need not

be disposed against the inside surface of the container as shown,

though this will ordinarily be the best place for it for several

reasons. Since evaporation and condensation take place at the vapor-

liquid interface, this disposition of the wick allows the necessary

radial heat transfer to occur through the medium of highest thermal

conductance and thus minimizes radisl temperature differences. This

also makes the hydraulic dismeter of the vapor space as large as

possible which minimizes axial pressure gradients in the flowing

vapor. The wick may be a woven cloth, roving, felt, sinter, etc.,

2or even simply slots or grooves in the container wall. The capillary

structure will be characterized by its mean pore radius, permeability

and liquid volume fraction. It is desirable but possibly not essential

that the heat pipe be self-priming; that is, if the requisite smount
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of liouid is.placed anywhere in the container it spontaneously

saturates the entire wick. This is accomplished by having sufficiently

small capillary pore size throughout the wick.

The worki~ fluid must wet the wick material; that is, the

contact an@e (the angle formed by a wedge of liquid in equilibrium

contact with the solid substrate) must be less than rr/2. While not

essential, it is desirable that the fluid also wet the container

wall as this improves the heat transfer. There is little penalty

for

the

the

a modest excess of liquid over the amount required to saturate

wick. A deficiency on the other hand can be expected to reduce

maximum heat transport by reducing the effective wick volume

in the evaporator section of the heat pipe.

3. Static condition

Suppose, first, that there is no heat addition or removal.and

that the pipe is at equilibrium with its length, z, at an angle @

to a gravitational field of acceleration, g. The pressure dis-

tribution in the liouid phase, PA(z), obeys the usual hydrostatic

law for an incompressible fluid:

Pj(z) = PI(0) + p~ sin @ (1)

.
where p

J
is the density of the liquid. The pressure in the vapor

phase pv(z), assumed an ideal gas, has a Boltzmann distribution in

the ~ravitational field, but the variation of pressure is entirely

nepJigible and we may take the pressure to be constant. The inter-
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face between the liquid in the capillary structure and the adjacent.

vapor must assume a local radius of curvature, r(z), so that surface

tension, y , supports the difference in pressure between the liquid

and the vapor. Thus

Pv(z) -P$z) =’* (2)

Now the vapor pressure of the li~id depends not only on the

ix?mperatureT, but also scmewhat on the radius of curvature of the

liquid-vapor interface, r. This dependence of the vapor pressure

P= p (T,r), is given by

+- :;
p(T,r) = p(T,~)e

where M is the molecular weight of the vapor and R is the universal

gas constant. The quantity 244/p4RT typically has order of magnitude

10-6 cmor less, and since the capillary pore sizes of practical

interest exceed 10
-4 -.. . . . . .

P= p(T) OIiLy. b

of the liquid must

p(T) =pv.

cm, we may neglect thiS dependence and take

the present equilibrium case the vapor pressure

be equal to the pressure in the adjacent vapor,

In a capillary structure of minimum pore radius rc, containing

a liquid for which the contact angle is 9 , the smallest radius of

curvature

interface

capillsry

curvature

that the meniscus can achieve is rcsece . The liquid-vapor

under some circumstances may be at the surface of the

structure or even outside it, so the maximum radius of

may be at least as large as the radius of the vapor space.
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If enough liquid is present to fcwm a POO1 in which the Wavitationa

force dcxninatessurface tension, then the radius Qf’curvature of the

interface mqy be essenti~ly infinite. Thus r must lie in the range!

~>r >rosecQ. Using these limiting values in (2) and combini~ with

(l)yields forthemaxinngnheightof capillary rise, zWsin$5, the

well-known result

z-sin@ = =
Pprc

In order to work properly the length of

exceed this z-.

4. Start-up

The quantitative details of

interest. We need describe only

quite automatically.

(3)

the heat pipe should not

Beginning with the equilibrium

we consider then what happens when

the start-up transient are of minor

qualitatively how it is accomplished

condition for

heat is added

which r(z)xcsec6,

to the pipe in the

evaporator section, 0< z<i? . The temperature and consequently the

vapor pressure of the liquid rises in the evaporator and falls in the

condenser. This gives rise to a pressure difference in the vapor

which drives it from the evaporator to the condenser. The driving

pressure difference in the vapor is sanewhat less than the difference

of the liquid vapor pressures, “since,in order to maintain continued

-12-



evaporation the vapor pressure of the liquid in the evaporator must

exceed the pressure in the adjacent vapor. Similarly, in order to

continue condensing, the pressure in the condenser vapor must exceed

the vapor pressure of the djacent liquid. As a result of evaporation

the liquid-vapor interface in the evaporator recedes somewhat into the

capillary structure and the radius of curvature of the meniscus

consequently decreases there. Condensation of vapor increases the

radius of cuzvature of the meniscus in the condenser, if it is not

already essentially infinite. Thus, according to (2), the pressure

distribution in

liquid from the

of pressures is

the liquid changes in the direction which drives

condenser to the evaporator.

shown in Fig. 2.

The starting transient is somewhat more

which will become the working fluid is below

The resulting distribution

cc%nplexwhen the material

its melting point initially.

As heat is added to the evaporator

brought to its melting temperature

which moves down the vapor duct to

adjacent to the evaporator section

section, the material there is

and above, and vapor is formed

the condenser section. Material

is heated to the melting point

partly by the condensation of vapor on its surface and partly by axial

conduction of heat along the container wall and the wick. The melt

zone thus moves out into the condenser section. In order for the

startup to fail, liquid must continually be depleted by evaporation

faster than it becomes available by melting, until all liquid formed

-13-



is

of

to

deposited as solid in the condenser section. In a lsrge number

tests of heat pipes of various kinds, success~ startup a~ars

be a fairly genersl rule as long as there are no unexpected

malformations of the wick.

5* Steady-state heat pipe regime

We consider now the quantitative

heat pipe in steady-state operation.

dynamics of the long cylindrical

We shall derive equations which

determine the distribution of energy flow,

and pressure within a heat pipe when it is

material flow, temperature

placed in a specified

external thermal

from the general

energy by tsking

environment. The basic working relations are obtained

equations of conservation of mass, momentum and

aversges over the radiel cross section of the pipe

and making simplifying assumptions.

The conservation of mass of a fluid of density p(z,r) in ste&@

flow with velocity ?(z,r) is expressed by

V.p?= o (4)

Since there is no flow normal to the outer bounduies of the liquid

region, the velocity ccmpnents Vz and Vr satis~ the boundary

conditions

vz(O,r) = vz(l,r) =

The total axial flow of vapor, iv ,

position z are respectively

vr(z,rw) = O (5)

and of liquid, &z , at axial

-14-



r
iv(z) = J’vp(z~r) Vz (zsr) 2nrdr; ~L(z)

o

I&@-Ying Gauss’ theorem to (4) in a

O and z and inside rw, and using (5) and

iv(z) + Iill(z)= o

‘~ p(z,r)vz(z,r)2tidr
v

cylindrical region between

(6), yields

(7)

(6)

The momentum equation for steady incapressible flow is

Vp= p;+’llv.vi?- p%v; (8)

where p is the pressure and ~ the coefficient of viscosity. The

implications of this equation for the liquid and vapor flows are

quite different.

As an approximation velid for the flow of liquid through the

porous structure of the wick we now obtain a version of Darcy’s law.

Consider the average of (8) over a small area with dtiensions shall

compared to the thickness of the wick but large ccmpared to the

average radius of a capillary pore, rc. Since (?) , the area average

?, includes regions occupied by solid wick structure, the aversge

flow velocity within the pores is (%) /e, where e is the fraction

of wick volume occupied by liqyid. Since the fluid velocity is

of order (?)/e within a

surface,,then in order of

( Tjv.w ) * -V4(’?)/er~

capillary passage and vanishes on the pore

m~nitude, <p4v.~>*p4<?)2/erc and

. The ratio of magnitudes of these two

terms is just the Reynold’s number for the average flow in a pore,

-15-



P~vr/~2 ~ ~fiichwi~ be a ccmpared to unity in all cases of

present interest. The final inertial term in (8) is therefore

neglected and we have

(9)

where b is a dimensionless constant depending on the detailed

geanetry of the capillary structure. For non-connected pmallel

cylindrical pores b N = 8. For realistic capillary structures,

with tortuous and interconnectedpores, b-10-20.

The average radial and sxial pressure grsiiientswill be inversely

proportional.to the flow areas in the radial and axial directions

respectively. For long thin pipes, that is as long as rvA>>r2~T,

the radial pressure gradient wiKL be negligible, and we may assume

that both the flow velocity and pressure in the liquid de~nd only

on 2. Thus specializing (9) to the

definition of the

The dynamics

total liquid mass

g
=p~sin#-

of the vapor flow

because in Ueneral an equation like

axial direction and using the

flow, (6), we have

bl}j(z)
(lo)

TT(r:-r~)p er2
AC

is decidedly more complex, partly

(10) relating the local pressure

gradient with the local mass flow does not even exist, and partly

because of the inertial temn in (8) is often not negligible in cases

-16-



of interest. The vapor flow i.nthe evaporator and condenser of a heat

P@e is dynaznicsllyidenticsl to pipe flow with injection or suction

through a porous wall. This problem has been studied byYuan and

Finkelstein3 for cylindrical pipes, and by fright and McInteer4 for

flow between plsne parellel walls. We summarize and quote the partial

results of these authors.

Both analyses assume incanpressible leminar flow and uniform

injection or suction. Several regimes must be distinguished, depending

on the magnitude of a Reynolds number, Rr, based

velocity at the channel wall, v = vr(z,rv),
r

the vapor density, pv, and viscosity, ~:

pvrvvr
Rr=-—=—

%
2Tr
i

Note that Rr is positive for evaporation and

For all values of Rr solutions are found for

the

on the radial flow

channel radius, rv,

&v
T (11)

negative for condensation.

which the axisl velocity

profiles are symmetric about the channel axis, with the profiles at

different axial stations differing only by a velocity scale factor

ProPortion~ to the distance &om the axial.origin ‘ofthe flow.

For lRrl<l, viscous effects daninate and the axial.velocity profile

is close to the usual. parabolic shape for Poiseuj,l.leflow. The

pressure decreases in the direction of flow, with a gradien’tlarger

than th%t of Poiseuille flow in the case of evaporation, and smaller

if vapor is condensing. In this regime the flow properties can

-17-



be calculated by a straightforwardperturbation

of the Reynolds number. The resulting pressure

expansion in puwers

gradient is given

approximately by3

dpv

7E=-

This expression is derived on the assumption that R- as defined in

(n) is a constant, independent of z. This will o~en be the case

in practical applications of heat pipes.

When lRrl is large the evaporation and condensation cases

4
becomes qualitatively different. Knight and McInteer show this in

theory for flow between plane parallel walls. Wageman and Guevara5

have verified the following description

pipe flow. For high evaporation rates,

of the velocity is not

The pressure decreases

can be calculated by a

With high condensation

parabolic but is

in the direction

experimentally for cylindrical

Rr>> 1. The radial dependence

proportional to cos E~ (*)2*

of flow. The flow properties

perturbation expansion in powers of l/Rr.

rates on the other hand, the flow is of

boundary layer type. The axial velocity is constant across most of

the channel, with the transition to zero velocity occurring in a thin

layer at the walll. !Chepressure increases in the direction of fluid

motion as a consequence of

flow. In this regtie only

described analytically, as

partial dynsmi.crecovery in the~decelerating

the limiting behavior can at present be

perturbation expansions cannot be made

-18-



self-consistently. In either lhnit, lRr\+UY , the pressure gradient

4
is given-by

●

dpv &v

x=- +x
Vv

(13)

where the difference in the flows enters only in the numerical

coefficients: for evaporation, s . 1; for condensation, s = 4/Tr2.

As before, (13) is strictly correct only for constant Rr.

Nothing appears to be known about the stability of these flows,

so that nothing definite can be said about the onset of turbulence.

The transition criterion as well as the properties of the fully

developed turbulent flow will depend

based on the mean sxial.velocity~z,

Rz

We

to

might, however, use (12) or (13),

also on a Reynolds number, Rz,

●

~:%
(14)

as appropriate, without regard

the problem of turbulence, for lack of better infomnation, except

for one case of practical interest where we may proceed on a sounder

basis. If the evaporator and condenser of a heat pipe are connected

by a long insulated section, then, since the returning condensate

will be heated by the outgoing vapor, there will be a small but

ordinarily neglifliblenet condensation slong the insulated part so

that Rr%. If R=< 1000, then the expression (12) for lsminar flow

is appropriate. If, however, Rz > 1000, ad the length exceeds, say

-19-



50 rv, then we

case we should

should expect fully developed turbulent flow. In this

use instead of (12), the empirical.Blasius law

dpv .0655<

z’-— pvl-;

To ccunpletethe discussion of the

~ 7/4
z

flow dynsmics

(15)

we must state

the connections between the vapor and liguid pressures and the

vapor and liQUid mass flows. As in the equilibrium case the inter-

face meniscus assumes a radius of curvature satisfying (2), except

that in the steady state pv also depends on z. The two maSS

flows ae coupled with the liquid temperature at the interface,

T(z,rv), which in turn determines t~e vapor pressure of

%
P* The local condensation rate ~ is given by the

formula

%
&v m’v(Pv-P)

737=—— =
‘z -

the liquid,

gas kinetic

(16)

The numerical factor a ‘1 includes both the probability of condensation

of an hnpinging vapor molecule, and the “roughness” of the meniscus

interface formed on

applies for surface

i.e., the formation

We now discuss

the capillary structure. Equation (16) slso

evaporation, but

of vapor bubbles

the transport of

not for boiling evaporation,

within the capillary structure.

energy. If ~is the energy flux,

then in the steady state and in the absence of sources, conservation

-20-



of energy requires

v.& o (17)

The convective and conductive contributions to the steady state

heat flux are given by

$=h$- kVT (18)

where h is the specific enthalpy of the fluid and k the themnsL

conductivity of the local medium. Net heat transport due to

radiation

and it is

Q(z), is

ordinarily makes a negligible contribution in a heat pipe

therefore neglected. The total axial heat transport,

Q(z) =

The desired a~roximation to

‘P
J’ q(z,r)2mti

Oz

(19) follows frcxn

(19)

a definition of the

heat ~ regime. The d~ce is operating in the heat pipe regime

when, though the heat flow may be very large, the axial and radial

temperature gradien-tsthroughout are very small, excepting only the

radial temperature gradient in the container wall and wick. Using

the axial component of (18) in (19), assuming the heat pipe regime

prevails, so that axial.conduction terms are small canpared to

convective terms, we have

r

s‘hAp4vz2nrdrQ(z) = ~~ hvPvvz2m* + rv (20)

The specific enthalpies of vapor and liquid depend on temperature

-21-



and are related by

hv(T) = hi(T) + L(T) (21)

where L(T) is the heat of va~rization at temperature T. The vapor

region is at nearly uniform temperature so hv can be taken out of

the first integral.of (20). If we define amean specific enthal~

(22)

then using (6), (7), (21) and (22), the expression for Q(z) becomes

Q(z) =I&v[l+ (hl-~A)/L]

Here hj is the liquid specific enthalpy at the temperature of the

vapor-liquid interface. Since .l(h2-~j)/Ll<A T/(L/cl) , where AT

is the radial

specific heat

quantity win

temperature difference

of the liquid, and for

differ negligibly from

across the wick and C2 is the

liquids L/c4-10~K, the bracketed

unity in any reasonable case.

Thus finally we have the scxnewhatobvious conclusion that the axial.

transport of energy is essentially entirely accomplished by the

vapor convection of latent heat of condensation:

Q(z) = L Xiv(Z) (24)

The heat pipe is coupled to the external environment through the

-22-



net rate of heat addition pr unit length of pipe, H = H (Z,TP,Q).

As indicated, H may depend on: z expliciiJy, when heat is added

with a known disln?ibution,as might be the case with electron

banbardment or induction hea’tingof the pipe surface; T = T(z,rp),
P

the temperature of the external surface of the pipe, as in the

case of radiation or conduction to a reservoir of specified

temperature; and Q. Q(z), as in the case of heating or cooling

using parallel forced convection by an external fluid. In any

case a prescription of the environment determines H as a known

fimction of its arguments. Applying Gauss’ theorernto (17) in

a cylinder of radius rp and length dz, and using (19), gives

#= - a-ITpCq (Z,rp) =Nz3TP)Q)

The radial heat flux through the container wall and

(25)

wick to

the vapor-li~id interface in the heat pipe regime is found by

applying Gauss’ theorem to (17) in an annulus, r >r>r
P v’

with

+hickness dz. Using (18) and (25), one may obtain the following

relation:

The bracketed quantity again differs negli~ibly from unity, implying

that convec’ti.oncontributes little to the radial transport of energy

through the wick. The temperature at the outside of the container

and the vapor-liquid interface are thus related by the standard resulk

-23-



for radial thermal conduction in a composite cylinder:

T= Tv + H/K
P

(27)

where

Tp = T(z,rp) ; Tv = T(z,rv)

1-=*(*An>+*m>)K
P w w v

The equations (2), (lo), (16), (24), (25), (27) ~d One Of

(x2), (1.3) or (15) as appropriate, pravide a basis for the ~~titative

calculation of heat pipe properties.

6. Solution of the steady-state equations

Rather accurate approximate solutions of the equations of the

preceding section can be obtained fairly simply. In the heat Pipe

regime the temperature is nearly uniform throughout the whole vapor

space and

frcunwhat

constant,

the distribution

they would be if

‘o “ If (27) iS

as a function of z, Tv and

of axial heat and mass flows differ

the vapor temperature was exactly a

solved for T
P

, we may express H in

Q.

~ = H(z,TV,Q)

little

(25)

(28)

The heat flows through the two ends of the pipe either are

-24-



negligible or at worst may be known functions of the local vapor

temperature, which we denote by FO(TV) and F4(TV) respectively. The

effective average temperature, TO , and its associated ~i~ heat

flux distribution, %(Z) ,arethen obtained asthe solution of

d%

x= H (Z,TO@
(29)

Q@) =FO(TO) ; Q&) =FA(TO)

Since this is a two-point boundary value problem on a first order

differential equation it can in genersl only be satisfied for

particular values of To. In a physically well.defined problem

H(z, To ~) will depend explicitly on To, and the value of To

satisfying (29) will be unique.

With this good approximation to the heat flux we may obtain

vapor and liquid mass flows from (24) and (7)

Ii+(z) = -&A(z) . ~ (Z)/L(3!o)

the

(30)

The vapor mass flow in turn determines the distribution of pressure

in the vapor, to within a constant, by integration of (12), (13) or

(15) as appropriate. Using iv(z) and pv(z) in (16) then determines

the vapor pressure of the liquid to within an additive constant.

Consistent with the accuracy of the calculation, this constant may

be taken as p(To). Since the vapor pressure is a known function

.25-



of the liquid surface temperature, this determines Tv(z). The self-

consistency of the approximate calculation is verified if the total

variation of Tv(z), found in this way, is smalJ-caqymed to TO.

Finslly, the liquid mass flow determines the axial distribution of

pressure in the liquid by integration of (10). Throughout the fore-

going all the temperature dependent properties, with the exception

of the vapor pressure, are sufficiently S.1OW1YVaviw that they ~Y

be taken as constants evaluated at TO.

We now obtain the total pressure and temperature variations

along a heat pipe for a particular, but rather commonly met case:

constant heat addition slong the evaporator, and constant heat

removal along the condenser. Thus

(31)

where Ae is the length of the evaporator and ~ is the totsl heat

input to the evaporator. Integrating (I-2)and (13), neglecting the

term in R: in the former, and assuming pv is constant in both, gives
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[-- 2
(1.4/l12)G&’

8pvr~L

Fran

APV = PV(2)-PV(0) = { e

(16) one obtains

; Rr<< 1

(32)

; Rr>> 1

AP=P(TV(A)) - (33)

It is a requirement for the heat pipe

be significantly smaller in magnitude

pressure

Clausius

differences occurring in the

regtie that both Apv and Ap

than p(To). For the small

heat pipe regtie the Clape~on-

equation may be used to calculate the temperature difference:

Dm 2

ATV = TV(I) - TV(0) = ~~ (34)

The liquid pressure differences, found by integrating (10), is

As an illustration of the magnitudes of pressure and temperature

drops typically encountered, we cite an experimental horizontal liquid

sodium heat pipe which was reported in the original description of

these devices.1 The relevant specifications are given in the left
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column and various derived properties in the right:

~ = 500 watts mv(jje)= 0.1 gm/sec

To = 920% p(To) =50mmlig

.$=gocm Apv = -oo21rmlHg

4=13cln AP = -o.5mrnl&

r= .64 cm Ap~ =’ 2mm Hg
v >

r= .80 cm ATV = -0.7 K
w

r= .012 cm
c

The main features of a working heat pipe are evident here: The

transport of considerable heat is accomplished by the circulation

of a small snmunt of working fluid; this circulation requires but

small pressure differences; and the accompanying temperature

difference is so small that its precise magnitude is not of importance

in practical applications.

7. M&@mumheat flux ~

While the thermal conductance of a heat pipe is very l=ge

there are, however, limitations on the magnitudes of both the total

and local energy fluxes.

The total axial heat transport may increase only if the force

of capillary origin can sustain the required circulation of fluid.

As previously noted, the ma?cbnumdifference in pressure between vapor

and adjacent liquid that can be supported by surface tension in the
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capillary structure is (2y cos e~e.

Pv(z) - Pj(z) <

It is therefore necessary that

2,~Cos e ;
‘n
‘c

In the general the largest pressure difference will

beginning of the evaporator section, z = O. If the

prepared with

meniscus will

the condenser

occur at the

heat pipe has

(36)

been

satisfied at z

For the

removal we may

a fully saturated wick, the vapor-liquid interface

have large radius of curvature at the terminal end of

and, therefore, Pv(z) = P&)* !i!husif (36) is

remarks to write

total axial heat

= o, it will be satisfied for all z.

particular case of unifo?nnheat addition and

use (32) and (35) together with the preceding

(1-4/T12)q

down explicitly the limiting condition on the

flux:

.

Rr <<1

(37)

Rr >>1

There is a further limitation on the local radial heat flux

in the evaporator section of the heat pipe. The liquid in the interior
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of the wick here is necessarily superheated. We should therefore

expect that the limitation will be closely connected with the

conditions for the onset of boiling in the capillary structure and

the quantitativeproperties of the subsequent evaporation and heat

transfer. The

encountered in

limitations of

interaction of

throughout the

problems here are more complex even than those

pool boiling of liquids, for in addition to the local.

boiling heat transfer, the undoubtedly deleterious

boiling with the overall circulation of liquid

capillary structure will be @portant. There is no

generally useflil.experimental information available yet on this

problem.

We can, however, give a

nonoccurrence of boiling. The

by a critical bubble radius of

conservative criterion for the

onset of boiling may be characterized

curvature, ru, which depends on the
u

nature and gecmetry of the interface where bubbles nucleate. If the

difference between the pressure of the vapn? in the bubble and the

pressure in the surrounding liquid is less than 2y/rb, then the bubble

will collapse. In a nucleating bubble the pressure in the vapor

cannot exceed p(T(z,r)), the equilibrium vapor pressure of the liquid

at the local temperature. Ihrthermore, in the capillary structure

rb cannot exceed rcsecO . Thus as long as

p(T(z,r)) - pj(z~r) ~
2ycoa e

r
c

(38)

bubbles cannot grow beyond the critical size, and true boiling win not
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occur , Of course, there may indeed be no boiling under more severe

conditions than given by this criterion.

8. Multi-cctnponentfluids

We consider the steady-state behavior of a heat pipe in which

a mixture of li~ids rather than a single pure ccmpound is used as

the working fluid. Conservation of mass again requires that

Iflv(z) +Iqz) = o

The mass of each ccanponentindividuallymust also be conserved.

Letting fv(z) and fj(z) be the mass fractions of some designated

component in vapor and liquid phases respectively, then

fv(z);v(z) +fx(z) &l(z) = o

Using (7) to eliminate ij(z)

[()fvz - fj(z)] Av(z) = o

(7)

(39)

(40)

This can be satisfied only if &v(z) = O or fv(z) = f~(z). The first

alternative implies no local refluxing. If we assume that the steady

state is close to thermodynamic equilibrium then the second alternative

can only be met in one of three special.ways: (a) fv = fe = 1, that

is, only the pure component is present locally in both phases; (b)

fv = fe . 0, that is, the designated component is locally totally

absent; (c) we are dealing with the very special case of a constant
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boiling mixture, which may in fact be regarded as constituting a new

pure ccaponent. If none of the foregoing cases holds, then gross

local thermodynamic non-equilibrium is implied.

If the heat pipe is originally charged with homogeneous

liquid mixture, then in the early transient heat transport, the

vapor leaving the evaporator will be richer in the more volatile

components than the returning liquid, which thus tends to concentrate

the less volatile ccanponentsin the evaporator and the more

volatile components in the condenser. Now,”there is an essentially

completely fractionated steady-state distribution of canponents

which is consistent with this trend, with the previously enumerated

near-equilibrium alternatives, and ~tiththe heat pipe dynamics which

require very smaXl pressure gradients throughout. This steady state

consists of a series of segments each containing a pure component which

is refluxing as an independent heat pipe. The components are arranged

in order

terminal

a series

order of

that the
.

of increasing volatility with the most volatile at the

end of the condenser. The temperature distribution forms

of plateaus, with the plateau temperatures decreasing in

increasing volatility of the local component, in such a way

pressure within the vapor is nearly constant throughout the

.

entire pipe. Between the segments there are short transition zones

of rapidly varying temperature within which there is no refluxing~

the entire axial heat transport occurring by ordinary thezmil.conduction,
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mainly through the container wall and wick. Along each temperature

transition zone the stagnant two-ccznponentliquid and vapor phases

vary in equilibrium concentrations in a way consistent with constancy

of total vapor pressure. Since the distribution of density is not

uniform, gravitationally induced convection, particular- of the

vapor phase, may modify this distribution considerably.

If the heat pipe contains some non-condensable gas of

low volubility in the working fluid, the foregoing applies equally

well.

driven

zone.

and to

to the

pipe.

length

It has been demonstrated that in the steady state the gas is

to the terminal end of the condenser where it forms a stagnant

‘Ihelength of this zone is proportional to the mass of gas

the mean temperature in the zone, and is inversely proportional

pressure of the vapor in the refluxing section of the heat

This feature might be usel%l. In such a heat pipe the working

of the condenser increases as the heat input to the evaporator

is increased.

9* Opttial heat pipes

Aheat pipe will commonly be required to transport the largest

possible mnount of heat, subject to whatever subsidiary constraints

arise in the particular application. In this case the maximum heat

flux criterion (36) applies, in the form

AP4 - Apv - ? =0
c

(41)
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If the subsidiary constraints do not involve the capillary pore size,

r=, then its optimum value may be deduced frctn(41) alone. According

to (10) the viscous contribution to ApA is inversely proportional

to r: . The standard extremizing procedure then yields and the result

that rc should be so chosen that the viscous contribution to Apj

is one-half the magnitude of the capillary pressure term,

(2ycos O)/rc. Forexemple, in the

removal, ApA is given by (35), and

case of uniform heat addition and

the optimum choice of rc is

bl]l C/#
r=
c 4rr(r2 - r~)p4eL y cos 0

w

If the hydrostatic contribution to Ap4 is absent, and if the

J
ratio r rw is not constrained by the subsidiary conditions, then

J
the optimum value of r rl~is 2/3. This follows by noting that

if Apv is obtained either from (12) or (13) as appropriate, and

the optimal value of rc is used for Ap4 in (41) then the greatest

heat transport corresponds to the msxbnnn value of r~(r~ - r2v). Under

these transport is found to be

%=

{

; Rr<< 1

; Rr>>l (43)

I
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If, for exsmple, a fixed total volume of wick is distributed in a

uniformly heated evaporator, so as to minimize the liqyid viscous

pressure drop in this section of the pipe, the cross-sectional

m?ea of wick should be proportional to G, and the pressure drop

is 8/9 of that of the wick of constant thickness.
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Fig. 1. Cylindrical Heat Pipe Structure
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Fig. 2. Distribution of Pressures in a Heat Pipe
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